2025학년도 3월 교육청 대비 Killing Point 모의고사
 가아탁 7 여여 (생명퐈학 I)

0 자신이 선택한 과목의 문제지인지 확인하시오.
0 매 선택과목마다 문제지의 해당란에 성명과 수험번호를 정확히 쓰시오.
○ 답안지의 필적 확인란에 다음의 문구를 정자로 기재하시오.

난 그대 품에 별빛을 쏟아 내리고

○ 답안지의 해당란에 성명과 수험번호를 쓰고, 또 수험번호와 답을 정확히 표시하시오.
○ 선택한 괴목 순서대로 문제를 풀고, 답은 답안지의 '제 1선택'란부터 차례대로 표시하시오.

○ 문항에 따라 배점이 다릅니다. 3점 문항에는 점수가 표시되어 있습니다. 점수 표시가 없는 문항은 모두 2점입니다.
○ 정오 사항과 모의고사 관련 빠른 정답, 추가 해설은 디올클래스에 업로드해두겠습니다.

생명과학 I
 1, 2, 3, 4 쪽

2025학년도 대학수학능력시험 대비 Killing Point 모의교사（3월） 제 4 교시 가핟탐기 영역（생명과학 I）

성명	수험번호		－				체（ ）선택

1．다음은 식물 X 에 대한 자료이다
X 에서 수면 위의（ㄱ）잎은 몸체를 띄우는 부엽으로 잎의 앞면에 있는 기공을 통해（ㄴ）광합성에 필요한 기체 A 를 협수한다． （ㄷ）수면 아래 잎은 깃털 모양을 하고 있어 물의 흐름으로부터 잎이 찟겨지는 것을 막기에 유리하다．

이 자료에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것은？

＜보 기〉

ㄱ．（ㄱ）은 세포로 구성된다．
ㄴ．（ㄴ）은 질소 고정의 한 예이다．
ㄷ．（ㄷ）은 생물의 특성 중 적응과 진화의 예에 해당한다．
（1） 7
（2）ᄂ
（3）ᄀ，ᄃ
（4）ᄂ，ᄃ
（5）ᄀ，ᄂ，ᄃ

2．그림은 사람에서 일어나는 물질대사 （가）를 나타낸 것이다．（ㄱ）과（ㄴ）은 각각 글리코젠과 포도당 중 하나이다．

이에 대한 설명으로 옳은 것만을
（ㄱ）
（ㄴ）
＜보기＞에서 있는 대로 고른 것은？［3점］

＜보 기

ㄱ．（ㄱ）은 글리코젠이다．
ㄴ．I 에서 동화 작용이 일어난다．
ㄷ．소화계에서（가）가 일어난다．
（1）ᄀ
（2）ᄂ
（3）ᄀ，ᄃ
（4）ᄂ，ᄃ
（5）ᄀ，ᄂ，ᄃ

3．다음은 어떤 과학자가 수행한 탐구이다．
（가）불가사리가 이 지역의 우점종인 담치를 잡아먹는 것을 관찰하고 불가사리를 제거하면 해당 군집의（a）종 다양성이 감소할 것이라고 가설을 세웠다．
（나）같은 지역에 서식하는 생물들을 집단 A 와 B 로 나눈 후， A 에는 불가사리를 그대로 두고， B 에서는 불가사리를 제거 하였다．
（다）일정 시간이 지난 후 종 수는 A 에서가 B 에서보다 많았다．
（라）불가사리를 제거하면 해당 군집의 종 다양성이 감소한다는 결론을 내렸다．

이 자료에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것은？［3점］

＜보 기＞

ㄱ．（나）에서 대조 실험이 수행되었다．
ㄴ．조작 변인은 불가사리의 제거 여부이다．
ㄷ．（a）는 동일한 생물 종이라도 형질이 각 개체 간에 다르게 나타나는 것을 의미한다．
（1）ᄀ
（2）ᄃ
（3）ᄀ，ᄂ
（4）ᄂ，ᄃ
（5）ᄀ，ᄂ，ᄃ

4．그림은 사람 몸에 있는 각 기관계의 통합적 작용을 나타낸 것이다． $\mathrm{A} \sim \mathrm{C}$ 는 배설계，소화계，순환계를 순서 없이 나타낸 것이다．
이에 대한 설명으로 옳은 것만을
 ＜보기＞에서 있는 대로 고른 것은？

＜보 기＞

ㄱ．（ㄱ）에는 O_{2} 의 이동이 포함된다．
ㄴ．오줌은（a）에 해당한다．
ㄷ．아미노산이 세포 호흡에 사용된 결과 생성되는 노폐물이 몸 밖으로 배출되는 데 A 와 C 가 모두 관여한다．
（1）ᄀ
（2）ᄂ
（3）ᄀ，ᄃ
（4）ᄂ，ᄃ
（5）ᄀ，ᄂ，ᄃ

5．그림은 중추 신경계로부터 자율 신경을 통해 각 기관에 연결된 경로를 나타낸 것이다．（가）와（나）는 연수와 척수를 순서 없이 나타낸 것이고 A 와 B 는 교감 신경과 부교감 신경을 순서 없이 나타낸 것이며，（ㄱ）과（ㄴ）은 소장과 홍채를 순서 없이 나타낸 것이다．

이에 대한 설명으로 옳은 것만을＜보기＞에서 있는 대로 고른 것은？

＜보 기＞

ㄱ．（나）의 겉질은 회색질이다．
ㄴ．A에서 신경절 이전 뉴런의 길이는 신경절 이후 뉴런의 길이보다 길다．
ㄷ．（ㄴ）은 소장이다．
（1）ᄀ
（2）ᄃ
（3）ᄀ，ᄂ
（4）ᄂ，ᄃ
（5）ᄀ，ᄂ，ᄃ

6．그림（가）는 어떤 동물의 염색체 구조 변화를，（나）는 이 동물의 체세포의 세포 주기를 나타낸 것이다．（a）와（b）는 각각 DNA와 단백질 중 하나 이고（ㄱ）과（ㄴ）은 M 기（분열기）와 S 기를 순서 없이 나타낸 것이다．

（가）

（나）

이에 대한 설명으로 옳은 것만을＜보기＞에서 있는 대로 고른 것은？

＜보 기＞

ㄱ．（a）에는 아미노산이 있다．
ㄴ．（ㄱ）시기에 세포 1 개당（b）의 양은 증가한다．
ㄷ．（ㄴ）시기에 과정 I 이 일어난다．
（1）ᄀ
（2）ᄃ
（3）ᄀ，ᄂ
（4）ᄂ，ᄃ
（5）ᄀ，ᄂ，ᄃ
7. 그림은 정상인 P 에서 티록신 분비 조절 과정의 일부를 나타낸 것이다. A 는 갑상샘과 뇌하수체 전엽 중 하나이고, (ㄱ)과 (ㄴ)은 각각 TRH 와 TSH 중 하나이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

<보 기>

ㄱ. 갑상샘에서 티록신이 분비된다.
ㄴ. P에서 A 에 TRH 의 표적 세포가 있다.
ㄷ. P에게 티록신을 투여하면 투여 전보다 (ㄴ)의 분비가 억제된다.
(1) ᄀ
(2) ᄃ
(3) ᄀ, ᄂ
(4) ᄂ, ᄃ
(5) ᄀ, ᄂ, ᄃ
8. 그림은 어떤 호수에 서식하는 두 종의 생물 A 와 B 의 수심에 따른 서식 분포를, 표는 A 와 B 의 특징을 나타낸 것이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 조건 이외는 고려하지 않는다.) [3점]

<보 기>

ㄱ. A 와 B 사이의 상호 작용은 경쟁에 해당한다.
ㄴ. 이 호수에서 A 는 B 와 한 개체군을 이룬다.
ㄷ. 자연 상태에서 (ㄱ)에 B 가 서식하지 않는 것은 A 와의 경쟁 배타의 결과이다.
(1) ᄀ
(2) ᄃ
(3) ᄀ, ᄂ
(4) ᄂ, ᄃ
(5) ᄀ, ᄂ, ᄃ
9. 그림은 사람 P 의 혈액과 혈액형이 A 형인 사람 Q 의 혈액을 섞은 결과를 나타낸 것이고 표는 어떤 집단 K 를 대상으로 ABO 식 혈액형에 대한 특징을 조사한 것이다. (ㄱ)과 (ㄴ)은 각각 응집원 A 와 응집원 B 중 하나이고, (ㄷ)과 (ㄹ)은 각각 응집소 α 와 응집소 β 중 하나이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

- 보 기>

ㄱ. K 의 학생 수는 200 명이다.
ㄴ. P 의 혈액에 라이 있다.
ㄷ. K 에서 (ㄷ)을 가진 학생 수는 항 B 혈청에 응집되는 혈액을 가진 학생 수보다 많다.
(1) ᄀ
(2) ㄷ
(3) ᄀ, ᄂ
(4) ᄂ, ᄃ
(5) ᄀ, ᄂ, ᄃ
10. 다음은 생쥐의 방어 작용 실험이다.

[실험 과정 및 결과]

(가) 유전적으로 동일하고 항원 $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ 에 노출된 적이 없는 생쥐 $\mathrm{I} \sim \mathrm{IV}$ 를 준비한다.
(나) $\mathrm{I} \sim \mathrm{IV}$ 에 표와 같이 각각 항원 (a)~(c)를 주사 한다. (a)~(c)는 $X \sim Z$ 를 순서 없이 나타낸 것이고, (가)는 (a), (b), (c) 중 하나이다.
(다) 2 주 후, (나)의 I 에서 (ㄱ)을, Π 에서 (ㄴ)을 분리한 후, (ㄱ)과 (ㄴ)을 IV에 주사한다. (ㄱ)은 (a)에 대한 기억 세포와 혈청 중 하나이고, (ㄴ)은 (b)에 대한 기억 세포와 혈청 중 하나이다.
(라) $\mathrm{I} \sim \mathrm{IV}$ 에 각각 $\mathrm{X} \sim \mathrm{Z}$ 를 모두 주사하고, 1 주 후 $\mathrm{I} \sim \mathrm{IV}$ 에서 $X \sim Z$ 각각에 대한 혈중 항체 농도를 조사한 결과는 그림과 같다.

이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것은? (단, 제시된 자료 이외는 고려하지 않는다.)

-<보 기>

ㄱ. (ㄴ)은 (b)에 대한 혈청이다.
ㄴ. (가)는 (a)이다.
ㄷ. (라)에서 Y에 대한 혈중 항체 농도는 \amalg 에서가 \amalg 에서보다 높다.
(1) ᄀ
(2) ᄃ
(3) ᄀ, ᄂ
(4) ᄂ, ᄃ
(5) ᄀ, ᄂ, ᄃ
11. 그림 (가)와 (나)는 어떤 사람의 체세포 분열 과정과 감수 분열 과정의 일부를 순서 없이 나타낸 것이고 표는 이 사람의 세포 $\mathrm{I} \sim \mathrm{IV}$ 에서 유전자 $\mathrm{A}, \mathrm{a}, \mathrm{B}, \mathrm{b}, \mathrm{D}, \mathrm{d}$ 의 DNA 상대량을 나타낸 것이다. $\mathrm{I} \sim \mathrm{IV}$ 는 각각 (a)~(d) 중 하나이고, A 와 a, B 와 b, D 와 d 는 각각 대립유전자이며, 3 쌍의 대립유전자 중 2 쌍은 같은 상염색체에 있다.

(가)

(나)

세포	DNA 상대량					
	A	a	B	b	D	d
I	$?$	0	2	0	0	2
II	(1)	2	$?$	$?$	2	$?$
III	0	$?$	(C)	0	2	0
IV	1	$?$	1	$?$	$?$	(ᄃ)

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 돌연변이와 교차는 고려하지 않으며, $\mathrm{A}, \mathrm{a}, \mathrm{B}, \mathrm{b}, \mathrm{D}, \mathrm{d}$ 각각의 1 개당 DNA 상대량은 1 이다. (a)는 중기의 세포이며, (b)와 (c) 중 한 개만 중기의 세포이다.) [3점]

> <보 기>

ᄀ. (ㄱ) + (ㄴ) + (ㄷ) $=3$ 이다.
ㄴ. A 는 B 와 같은 염색체에 있다.
ㄷ. $\frac{\text { (b)의 상염색체의 수 }}{\text { III의 성염색체의 염색 분체 수 }}=22$ 이다.
(1) ᄀ
(2) ᄂ
(3) ᄀ, ᄃ
(4) ᄂ, ᄃ
(5) ᄀ, ᄂ, ᄃ
12. 다음은 골격근의 수축 과정에 대한 자료이다.

- 그림은 근육 원섬유 마디 X 의 구조를, 표는 골격근 수축 과정의 두 시점 t_{1} 과 t_{2} 일 때 (a)의 길이와 (b)의 길이를 더한 값((a)+(b))과 (a)의 길이에서 (b)의 길이를 뺀 값((a)—(b))을 나타낸 것이다. X 는 좌우 대칭이고, Z_{1} 과 Z_{2} 는 X 의 Z 선이다. t_{2} 일 때 A 대의 길이는 $1.6 \mu \mathrm{~m}$ 이며, (a)와 (b)는 각각 (ㄱ)~(ㄷ) 중 하나이다.

시점	(a) + (b)	(a) - (b)
t_{1}	$1.6 \mu \mathrm{~mm}$	$0.4 \mu \mathrm{~m}$
t_{2}	$0.4 \mu \mathrm{~m}$	$?$

- 구간 (ㄱ)은 액틴 필라멘트만 있는 부분이고 (ㄴ)은 액틴 필라멘트와 마이오신 플라멘트가 겹치는 부분이며, (ㄷ)은 마이오신 필라멘트만 있는 부분이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?
<보 기>
ㄱ. (a)는 (ㄷ)이다.
ㄴ. t_{1} 일 때, Z_{1} 로부터 Z_{2} 방향으로 거리가 $1.0 \mu \mathrm{~m}$ 인 지점은 (ㄷ)에 해당한다.
ㄷ. t_{2} 일 때 (b)의 길이는 H 대의 길이와 같다.
(1) ᄀ
(2) ᄂ
(3) ᄀ, ᄃ
(4) ᄂ, ᄃ
(5) ᄀ, ᄂ, ᄃ
13. 그림은 같은 종의 동물 개체 A 와 B 에 소금물을 주사하였을 때 단위 시간당 오줌 생성량 변화를 나타낸 것이다. A 와 B 중 하나는 뇌하수체 후엽이 제거되었다.

이에 대한 설명으로 옳은 것만을 <보기>에
 서 있는 대로 고른 것은?

<보 기>

ㄱ. 뇌하수체 후엽은 삼투압 조절의 중추이다.
ㄴ. 뇌하수체 후엽이 제거된 동물은 A 이다.
ㄷ. B 에서 혈중 ADH 농도는 t_{1} 일 때가 t_{2} 일 때보다 높다.
(1) ᄀ
(2) ᄂ
(3) ᄀ, ᄂ
(4) ᄂ, ᄃ
(5) ᄀ, ᄂ, ᄃ
14. 다음은 사람의 유전 형질 (가)와 (나)에 대한 자료이다.

○ (가)는 서로 다른 2 개의 상염색체에 존재하는 4 쌍의 대립유전자 A 와 a, B 와 b, D 와 d, E 와 e 에 의해 결정된다.
○ (가)의 표현형은 유전자형에서 대문자로 표시되는 대립 유 전자의 수에 의해서만 결정되며, 이 대립유전자의 수가 다 르면 표현형이 다르다.
○ (나)는 대립유전자 F와 f에 의해 결정되며, 유전자형이 다르면 표현형이 다르다. (나)의 유전자는 (가)의 유전자와 서로 다른 상염색체에 있다.

- P 의 유전자형은 AaBbDdEeFf 이고, P 와 Q 의 (가)의 유전자형이 서로 같다.
- P 와 Q 사이에서 (a)가 태어날 때, (a)에게서 나타날 수 있는 (가)와 (나)의 표현형은 최대 3가지이다.
(a)의 (가)와 (나)의 유전자형이 Q 와 같을 확률은? (단, 돌연변이와 교차는 고려하지 않는다.) [3점]
(1) $\frac{1}{16}$
(2) $\frac{1}{8}$
(3) $\frac{3}{16}$
(4) $\frac{1}{4}$
(5) $\frac{3}{8}$

15. 다음은 민말이집 신경 A 의 흥분 전도와 전달에 대한 자료이다.

- A는 2개의 뉴런으로 구성되고 각 뉴런의 흥분 전도 속도는 (가)로 같다. 그림은 A 의 지점 $d_{1} \sim d_{5}$ 의 위치를, 표는 d_{2} 와 d_{4} 에 각각 역치 이상의 자극을 1 회 주고 경과된 시간이 4 ms 일 때 $d_{1} \sim d_{5}$ 에서의 막전위를 나타낸 것이다. (가)와 (나) 중 한 곳에만 (ㄱ)시냅스가 있고, $\mathrm{I} \sim \mathrm{V}$ 은 $d_{1} \sim d_{5}$ 을 순서 없이 나타낸 것이다.

○ d_{1} 에서 d_{2} 까지의 거리와 d_{4} 에서 d_{5} 까지의 거리는 3 cm 로 같고 d_{1} 에서 d_{5} 까지의 거리는 9 cm 이다.
○ A 에서 활동 전위가 발생하였을 때, 각 지점에서 막전위 변화는 그림과 같다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, A 에서 흥분의 전도는 1 회 일어났고, 휴지 전위는 -70 mV 이다.) [3점]

<보 기>

ㄱ. (ㄱ)에서 흥분의 전달 방향은 (a)이다.
ㄴ. (가)는 $3 \mathrm{~cm} / \mathrm{ms}$ 이다.
ㄷ. d_{3} 에 역치 이상의 자극을 주고 경과된 시간이 5 ms 일 때 d_{5} 에서 탈분극이 일어나고 있다.
(1) ᄀ
(2) ᄂ
(3) ᄀ, ᄂ
(4) ᄀ, ᄃ
(5) ᄂ, ᄃ
16. 다음은 핵상이 $2 n$ 인 동물 $\mathrm{A} \sim \mathrm{C}$ 의 세포 (가) \sim (라)에 대한 자료이다.
$\circ \mathrm{A}$ 와 B 는 서로 다른 종이고, A 와 C 는 서로 같은 종이며, B 와 C 의 성은 같다. A 와 B 의 체세포 1 개당 염색체 수는 서로 다르다.
○ (가)~(라) 중 (a)개는 암컷의, 나머지는 수컷의 세포이다. A~C의 성염색체는 암컷이 XX , 수컷이 XY 이고 (a)는 $1,2,3$ 중 하나이다.

- 그림은 (가)~(라) 각각에 들어 있는 모든 상염색체와 (ㄱ)을 나타낸 것이다. (ㄱ)은 X 염색체와 Y 염색체 중 하나이다.

(나)

(다)

(라)

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 돌연변이는 고려하지 않는다.) [3점]

- 보 기>-

ㄱ. (ㄱ)은 X 염색체이다.
ㄴ. (a)는 1 이다.
ㄷ. A 의 감수 1 분열 중기 세포 1 개당 상염색체의 염색 분체 수는 12이다.
(1) ᄀ
(2) ᄂ
(3) ᄀ, ᄃ
(4) ᄂ, ᄃ
(5) ᄀ, ᄂ, ᄃ
17. 다음은 어떤 집안의 유전 형질 (가)와 (나)에 대한 자료이다.

O (가)는 대립유전자 A 와 a 에 의해 결정되며, A 는 a 에 대해 완전 우성이다.

- (나)는 대립유전자 D, E, F에 의해 결정되며, (ㄱ)은 (ㄴ)과 F에 대해 완전 우성이며, (나)의 표현형은 4 가지이다. (ㄱㄱㄱㅘ (ㄴ)은 각각 D 와 E 중 하나이다.
- 가계도는 구성원 $1 \sim 6$ 에게서 (가)의 발현 여부를, 표는 구성원 $1,3,5,6$ 에서 체세포 1 개당 (a)와 E의 DNA 상대량을 더한 값 (a) +E$)$ 을 나타낸 것이다. (a)는 A 와 a 중 하나이다.

구성원	@ +E
1	2
3	3
5	2
6	3

- $1,2,3,4$ 의 (나)의 표현형은 모두 다르고, $4,5,6$ 의 (나)의 표현형도 모두 다르다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 돌연변이와 교차는 고려하지 않으며, A, a, D, E, F 각각의 1 개당 DNA 상대량은 1 이다.) [3점]

<보 기>

ㄱ. (a)는 A이다.
ㄴ. (나)의 유전자는 X 염색체에 있다.
ㄷ. 6 의 동생이 태어날 때, 이 아이의 (가)와 (나)의 표현형이 모두 2 와 같을 확률은 $\frac{1}{4}$ 이다.
(1) ᄀ
(2) ᄂ
(3) ᄀ, ᄃ
(4) ᄂ, ᄃ
(5) ᄀ, ᄂ, ᄃ
18. 다음은 방형구법을 이용하여 어떤 지역의 식물 군집을 조사한 결과를 나타낸 것이다.

○ 이 지역에 동일한 크기의 방형구 10 개를 설치하여 식물 종 $\mathrm{A} \sim \mathrm{D}$ 의 분포를 조사했다. 표는 조사한 자료를 바탕으로 $\mathrm{A} \sim \mathrm{D}$ 의 개체 수, 상대 빈도, 상대 피도, 중요치를 나타낸 것이다. A 는 설치한 방형구에 모두 출현하였다.

종	개체 수	상대 빈도(\%)	상대 피도(\%)	중요치
A	(ㄱ)	40	12	76
B	22	28	$?$	()
C	6	(ㄷ)	36	56
D	10	$?$	20	64

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, $\mathrm{A} \sim \mathrm{D}$ 이외의 종은 고려하지 않는다.) [3점]
\square <보 기>
ㄱ. (ㄱ) $+($ (1) $+(\mathrm{C})=124$ 이다.
ㄴ. 지표를 덮고 있는 면적이 가장 큰 종은 C 이다.
ㄷ. B 가 출현한 방형구는 D 가 출현한 방형구보다 4 개 많다.
(1) ᄀ
(2) ᄃ
(3) ᄀ, ᄂ
(4) ᄂ, ᄃ
(5) ᄀ, ᄂ, ᄃ
19. 다음은 사람의 유전 형질 (가)와 (나)에 대한 자료이다.

O (가)는 대립유전자 A와 a 에 의해, (나)는 대립유전자 B 와 b 에 의해 결정된다. (가)와 (나)의 유전자 중 하나는 7번 염색체에 있고 나머지 하나는 X 염색체에 있다.

- 그림은 G 기 세포 I 로부터 정자가 형성되는 과정을, 표는 세포 (ㄱ) (())의 핵상과 (ㄱ)~(ㅁ)에서 세포 1 개당 $\mathrm{A}, \mathrm{a}, \mathrm{B}, \mathrm{b}$ 의 DNA 상대량을 나타낸 것이다. (ㄱ)~()은 $\mathrm{I} \sim \mathrm{V}$ 를 순서 없이 나타낸 것이다.

세포	핵상	DNA 상대량			
		a	B	b	
(ㄱ)		$?$	2	$?$	2
(ㄴ)	$2 n$	0	1	1	1
(ㄷ)	$?$	$?$	2	2	2
(ㄹ)	$?$	0	0	1	0
()	n	0	$?$	1	1

- 감수 1 분열 과정에서 대립유전자 (각가 (a) 대립유전자 (ㄴ)가 있는 염색체로 이동하는 돌연변이가 1회 일어났다. (ㄱ7ㄱㅇㅘ (ㄴ)는 각각 $\mathrm{A}, \mathrm{a}, \mathrm{B}, \mathrm{b}$ 중 하나이고, (가)와 (나) 중 서로 다른 형질을 결정하는 대립유전자이다.
이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 돌연변이 이외의 돌연변이와 교차는 고려하지 않으며, $\mathrm{A}, \mathrm{a}, \mathrm{B}, \mathrm{b}$ 각각의 1 개당 DNA 상대량은 1 이다. I, II, IV는 중기의 세포이다.) [3점]
<보 기>
ㄱ. 리은 피이다.
ㄴ. (a)는 X 염색체이다.
ᄃ. $\frac{\mathrm{V} \text { 에서 } \mathrm{A}, \mathrm{a}, \mathrm{B}, \mathrm{b} \text { 의 DNA 산대랼을 더한 값 }}{\mathrm{IV} \text { 에서 (가ㅇㅘㅘ (ㄴ)의 DNA 상대량을 더한 값 }}=1$ 이다.
(1) ᄀ
(2) ᄂ
(3) ᄀ, ᄃ
(4) ᄂ, ᄃ
(5) ᄀ, ᄂ, ᄃ

20. 그림은 어떤 생태계에서 $\mathrm{A} \sim \mathrm{D}$ 의 에너지양을 상댓값으로 나타낸 것이다. $\mathrm{A} \sim \mathrm{D}$ 는 각각 생산자, 1 차 소비자, 2 차 소비자, 3 차 소비자 중 하나이다. $\frac{(\text { (ㄷ) }}{(7)}=10$ 이고 2 차 소비자의 에너지 효율은 20% 이다.

구분	에너지양 (상댓값)
A	5
B	20
C	(ㄱ)
D	(ㄴ)

이에 대한 설명으로 옳은 겻만을 <보기>에서 있는 대로 고른 것은?

ㄱ. A 는 생산자이다.
ㄴ. (ㄴ)은 1000 이다.
ㄷ. 상위 영양 단계로 갈수록 에너지양은 감소한다.
(1) ᄀ
(2) ᄂ
(3) ᄃ
(4) ᄀ, ᄃ
(5) ᄂ, ᄃ

* 확인 사항

- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인하시오.

